Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 1137820200410020067
ÀÇ°øÇÐȸÁö
2020 Volume.41 No. 2 p.67 ~ p.74
Analysis for Concentration Range of Fluorescein Sodium
Lee Da-Ae

Kim Yong-Jae
Yoon Ki-Cheol
Kim Kwang-Gi
Abstract
Brain tumors or gliomas are fatal cancer species with high recurrence rates due to their strong invasiveness. Therefore, the goal of surgery is complete tumor resection. However, the surgery is difficult to distinguish the border because tumors and blood vessels have the same color tone and shape. The fluorescein sodium is used as a fluorescence contrast agent for boundary separation. When the external light source is irradiated, yellow fluorescence is expressed in the tumor, which helps distinguish between blood vessels and tumor boundaries. But, the fluorescence expression of fluorescence sodium depends on the concentration of fluorescein sodium and such analytical data is insufficient. The unclear fluorescence can obscure the boundaries between blood vessels and tumors. In addition, reduce the efficiency of fluorescence sodium use. This paper proposes a protocol of concentration range for fluorescence expression conditions. Fluorescent expression was observed using a near-infrared (NIR) color camera with corresponding dilution using normal saline in 1 ml microtube. The flunoresence emission density range is 1.00 mM to 0.15 mM. The fluorescence emission begin to 1.00 mM and the 0.15 mM discolor. The discolor is difficult to fluorescence emission condition obserbation. Thus, the maximum density range of the bright fluoresecein is 0.15 mM to 0.30 mM. When the concentration range of fluorescein sodium is analyzed based on the gradient of fluorescence expression and the power measurement, the brightest fluorescence is expected to facilitate the complete resection of the tumor. For the concentration range protocol, setting concentration ranges and analyzing fluorescence expression image according to saturation and brightness to find optimal fluorescence concentration are important. Concentration range protocols for fluorescence expression conditions can be used to find optimal concentrations of substances whose expression pattern varies with concentration ranges. This study is expected to be helpful in the boundary classification and resection of brain tumors and glioma.
KEYWORD
Fluorescein sodium, NIR camera, Dilution, Half-life-time, Normal saline
FullTexts / Linksout information
Listed journal information
ÇмúÁøÈïÀç´Ü(KCI) ´ëÇÑÀÇÇÐȸ ȸ¿ø